Review of Linear Algebra
Definitions

An $m \times n$ (read "m by n") **matrix**, is a rectangular array of entries, where m is the number of rows and n the number of columns.

$$A = \begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{bmatrix}$$
Definitions (Con’t)

• \(A \) is \textit{square} if \(m = n \).
• \(A \) is \textit{diagonal} if all off-diagonal elements are 0, and not all diagonal elements are 0.
• \(A \) is the \textit{identity matrix} (\(I \)) if it is diagonal and all diagonal elements are 1.
• \(A \) is the \textit{zero} or \textit{null matrix} (\(0 \)) if all its elements are 0.
• The \textit{trace} of \(A \) equals the sum of the elements along its main diagonal.
• Two matrices \(A \) and \(B \) are \textit{equal} iff they have the same number of rows and columns, and \(a_{ij} = b_{ij} \).
Some Basic Matrix Operations

• The *sum* of two matrices A and B (of equal dimension), denoted $A + B$, is the matrix with elements $a_{ij} + b_{ij}$.

• The *difference* of two matrices, $A - B$, has elements $a_{ij} - b_{ij}$.

• The *product*, AB, of $m \times n$ matrix A and $p \times q$ matrix B, is an $m \times q$ matrix C whose (i,j)-th element is formed by multiplying the entries across the ith row of A times the entries down the jth column of B; that is,

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{pj}$$
Definitions (Con’t)

• The *transpose* A^T of an $m \times n$ matrix A is an $n \times m$ matrix obtained by interchanging the rows and columns of A.

• A square matrix for which $A^T = A$ is said to be *symmetric*.

• Any matrix X for which $XA = I$ and $AX = I$ is called the *inverse* of A.

• Let c be a real or complex number (called a *scalar*). The *scalar multiple* of c and matrix A, denoted cA, is obtained by multiplying every elements of A by c. If $c = -1$, the scalar multiple is called the *negative* of A.
Determinant

• The *determinant* of a matrix A is denoted $\det(A)$, $\det A$, or $|A|$.

• For a 2×2 matrix:

$$|A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

• For a 3×3 matrix:

$$|A| = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix} = aei + bfg + cdh - ceg - bdi - afh.$$
Definitions (Con’t)

A **column vector** is an $m \times 1$ matrix:

$$
\mathbf{a} = \begin{bmatrix}
 a_1 \\
 a_2 \\
 \vdots \\
 a_m
\end{bmatrix}
$$

A **row vector** is a $1 \times n$ matrix:

$$
\mathbf{b} = [b_1, b_2, \ldots, b_n]
$$

A column vector can be expressed as a row vector by using the transpose:

$$
\mathbf{a}^T = [a_1, a_2, \ldots, a_m]
$$
Vector Norms

• The **norm** of a vector is

\[
\| \mathbf{x} \| = \left[x_1^2 + x_2^2 + \cdots + x_m^2 \right]^{1/2}
\]

(this is the 2-norm; other norms can be used)

• This is recognized as the Euclidean distance from the origin to point \(\mathbf{x} \); or the length of a vector \(\mathbf{x} \).

• The norm can also be written as

\[
\| \mathbf{x} \| = \left[\mathbf{x}^T \mathbf{x} \right]^{1/2}
\]
Some Basic Matrix Operations (Con’t)

The *inner product* (also called *dot product*) of two vectors

\[
a = \begin{bmatrix}
 a_1 \\
 a_2 \\
 \vdots \\
 a_m
\end{bmatrix} \quad b = \begin{bmatrix}
 b_1 \\
 b_2 \\
 \vdots \\
 b_m
\end{bmatrix}
\]

is defined as

\[
a^T b = b^T a = a_1 b_1 + a_2 b_2 + \cdots + a_m b_m = \sum_{i=1}^{m} a_i b_i.
\]

Note that the inner product is a scalar.
Vector Norms (Con’t)

Two vectors in \mathbb{R}^m are \textit{orthogonal} if and only if their inner product is zero. Two vectors are \textit{orthonormal} if, in addition to being orthogonal, the length of each vector is 1.

An arbitrary vector \mathbf{a} is turned into a vector \mathbf{a}_n of unit length by performing the operation $\mathbf{a}_n = \mathbf{a}/|\mathbf{a}|$. Clearly, then, $|\mathbf{a}_n| = 1$.

A \textit{set of vectors} is said to be an \textit{orthogonal} set if every two vectors in the set are orthogonal.
Cross Product

• The **cross product** of two vectors \mathbf{a} and \mathbf{b} is defined only in three-dimensional space and is denoted by $\mathbf{a} \times \mathbf{b}$:

$$\mathbf{a} \times \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \sin(\theta) \mathbf{n}$$

• where θ is the angle between \mathbf{a} and \mathbf{b}, and \mathbf{n} is a unit vector perpendicular to both \mathbf{a} and \mathbf{b}.

• You can also compute the cross product via

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$

where \mathbf{i}, \mathbf{j}, and \mathbf{k} are the standard basis vectors.
Combinations of Vectors

A **linear combination** of vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ is an expression of the form

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \cdots + \alpha_n \mathbf{v}_n$$

where the α’s are scalars.

A vector \mathbf{v} is **linearly dependent** on a set of vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ if and only if \mathbf{v} can be written as a linear combination of these vectors. Otherwise, \mathbf{v} is **linearly independent** of the set of vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$.
Eigenvalues & Eigenvectors

Definition: The *eigenvalues* of a real matrix \mathbf{M} are the real numbers λ for which there is a nonzero vector \mathbf{e} such that

$$\mathbf{Me} = \lambda \mathbf{e}.$$

The *eigenvectors* of \mathbf{M} are the nonzero vectors \mathbf{e} for which there is a real number λ such that $\mathbf{Me} = \lambda \mathbf{e}$.

If $\mathbf{Me} = \lambda \mathbf{e}$ for $\mathbf{e} \neq 0$, then \mathbf{e} is an *eigenvector* of \mathbf{M} associated with *eigenvalue* λ, and vice versa. The eigenvectors are linearly independent.
Example: Consider the matrix

\[M = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \]

It is easy to verify that \(Me_1 = \lambda_1 e_1 \) and \(Me_2 = \lambda_2 e_2 \) for \(\lambda_1 = 1, \lambda_2 = 2 \) and

\[e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad \text{and} \quad e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \]

In other words, \(e_1 \) is an eigenvector of \(M \) with associated eigenvalue \(\lambda_1 \), and similarly for \(e_2 \) and \(\lambda_2 \).