Alignment Using Linear Least Squares Applications to 2D Image Transforms
Outline

• First, a review of least squares fitting
• Finding an image transform using least squares
• The transform caused by a rotating camera
• Applying a transform to an input image to get an output image
 – Example: generating an orthophoto
 – Example: stitching two images together to make a “panorama”
Least Squares Fitting to a Line

- We have some measurement data \((xi, yi)\)
- We want to fit the data to \(y = f(x) = mx + b\)
- We will find the parameters \((m, b)\) that minimize the objective function

\[
E = \sum_i |y_i - f(x_i)|^2
\]

Example

\((x_1, y_1) = (1, 1) \)
\((x_2, y_2) = (2, 3) \)
\((x_3, y_3) = (3, 4) \)
Linear Least Squares

• In general
 – The input data can be vectors
 – The function can be a linear combination of the input data

• We write $A \mathbf{x} = \mathbf{b}$
 – The parameters to be fit are in the vector \mathbf{x}
 – The input data is in A, \mathbf{b}

• Example of a line
 – Parameter vector
 $$\mathbf{x} = \begin{pmatrix} m \\ b \end{pmatrix}$$
 – Linear equations
 $$\begin{pmatrix} x_1 & 1 \\ x_2 & 1 \\ x_3 & 1 \end{pmatrix} \begin{pmatrix} m \\ b \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$

• So for a line
 $$A = \begin{pmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots \\ x_N & 1 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{pmatrix}$$
Solving Linear Least Squares

• Want to minimize
 \[E = |A x - b|^2 \]

• Expanding we get
 \[E = x^T (A^T A)x - 2x^T (A^T b) + |b|^2 \]

• To find the minimum, take derivative wrt \(x \) and set to zero, getting
 \[(A^T A)x = A^T b \]

 Called the “normal equations”

• To solve, can do
 \[x = (A^T A)^{-1} A^T b \]
 “pseudo inverse”
 \[A^+ = (A^T A)^{-1} A^T \]

• In Matlab can do
 – \(x = \text{pinv}(A) \ast b; \)
 – or \(x = A \backslash b; \)

 • Note – it is preferable to solve the normal equations using Cholesky decomposition
Example

• The linear system for the line example earlier is $A\mathbf{x} = \mathbf{b}$, where

$$A = \begin{pmatrix} x_1 & 1 \\ x_2 & 1 \\ x_3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

• Normal equations $$(A^T A)\mathbf{x} = A^T \mathbf{b}$$

$$A^T A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 14 & 6 \\ 6 & 3 \end{pmatrix}, \quad \mathbf{x} = (A^T A)^{-1} A^T \mathbf{b} = \begin{pmatrix} 1.5 \\ -0.333 \end{pmatrix}$$

• So the best fit line is $y = 1.5x - 0.333$
Finding an image transform

- If you know a set of point correspondences, you can estimate the parameters of the transform
- Example – find the rotation and translation of the book in the images below

% Using imtool, we manually find % corresponding points (x;y), which are % the four corners of the book
pA = [
 221 413 416 228;
 31 20 304 308];

pB = [
 214 404 352 169;
 7 34 314 280];
Example (continued)

• A 2D rigid transform is

\[
\begin{pmatrix}
 x_B \\
 y_B \\
 1
\end{pmatrix} =
\begin{pmatrix}
 c & -s & t_x \\
 s & c & t_y \\
 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
 x_A \\
 y_A \\
 1
\end{pmatrix},
\]

where \(c = \cos \theta \), \(s = \sin \theta \)

• Or

\[
x_B = cx_A - sy_A + t_x
\]
\[
y_B = sx_A + cy_A + t_y
\]

• We put into the form \(Ax = b \), where

\[
A = \begin{pmatrix}
 x_A^{(1)} & -y_A^{(1)} & 1 & 0 \\
 y_A^{(1)} & x_A^{(1)} & 0 & 1 \\
 \vdots & \vdots & \vdots & \vdots \\
 y_A^{(N)} & x_A^{(N)} & 0 & 1
\end{pmatrix}, \quad x = \begin{pmatrix}
 c \\
 s \\
 t_x \\
 t_y
\end{pmatrix}, \quad b = \begin{pmatrix}
 x_B^{(1)} \\
 y_B^{(1)} \\
 \vdots \\
 y_B^{(N)}
\end{pmatrix}
\]

Note: \(c \) and \(s \) are not really independent variables; however we treat them as independent so that we get a system of linear equations.
% Here are corresponding points (x;y)
pA = [
 221 413 416 228;
 31 20 304 308];
pB = [
 214 404 352 169;
 7 34 314 280];
N = size(pA,2);

A = zeros(2*N,4);
for i=1:N
 A(2*(i-1)+1, :) = [pA(1,i) -pA(2,i) 1 0];
 A(2*(i-1)+2, :) = [pA(2,i) pA(1,i) 0 1];
end
b = reshape(pB, [], 1);

x = A;
theta = acos(x(1));

Note: you might get slightly different values of theta, from c and s. You could average them to get a better estimate.

% How about an affine transform?
The case of a rotating camera

- Let point P be defined in camera #1’s coordinate system. Then
 \[
 \tilde{x}_1 = K \begin{pmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0
 \end{pmatrix} \begin{pmatrix}
 c_1 X \\
 c_1 Y \\
 c_1 Z
 \end{pmatrix} = K \begin{pmatrix}
 c_1 X \\
 c_1 Y \\
 c_1 Z
 \end{pmatrix}
 \]

- Also
 \[
 \begin{pmatrix}
 c_1 X \\
 c_1 Y \\
 c_1 Z
 \end{pmatrix} = K^{-1} \tilde{x}_1
 \]

- If there is only rotation from camera #1 to camera #2, then
 \[
 \begin{pmatrix}
 c_2 X \\
 c_2 Y \\
 c_2 Z
 \end{pmatrix} = \begin{pmatrix}
 c_2 R & 0 \\
 0 & 1
 \end{pmatrix} \begin{pmatrix}
 c_1 X \\
 c_1 Y \\
 c_1 Z
 \end{pmatrix}, \text{ or } \begin{pmatrix}
 c_2 X \\
 c_2 Y \\
 c_2 Z
 \end{pmatrix} = c_2 R \begin{pmatrix}
 c_1 X \\
 c_1 Y \\
 c_1 Z
 \end{pmatrix}
 \]

- and
 \[
 \tilde{x}_2 = K \begin{pmatrix}
 c_2 X \\
 c_2 Y \\
 c_2 Z
 \end{pmatrix} = K \begin{pmatrix}
 c_2 R & K^{-1}
 \end{pmatrix} \tilde{x}_1
 \]

The 3x3 matrix KRK^{-1} is a projective transform (homography) from image 1 to image 2.
Example

• Given an image of a scene, create another image as if it were taken with the camera at the same position, but rotated 30 degrees

```
clear all
close all

I1 = imread('cameraman.tif');
I2 = zeros(size(I1));

% Say we have a rotation about the camera's y axis
th = 30.0 * pi/180;
Ry = [ cos(th) 0 sin(th);
      0 1 0;
      -sin(th) 0 cos(th)];
R_1_2 = Ry;

K = [ 128 0 128;
      0 128 128;
      0 0 1];
Kinv = inv(K);

% This is the projective transform (homography) from image 1 to image 2
H = K*R_1_2*Kinv
```
Generating another image using a transform

- We know the transformation from input image to output image, \(p_2 = H p_1 \)

- But instead we use the inverse, \(p_1 = H^{-1} p_2 \)

- Then we scan through every point \(p_2 \) in the output image, and calculate the point \(p_1 \) in the input image where we should get the intensity value to use
 - This makes sure that we don’t miss assigning any pixels in the output image
 - If \(p_1 \) falls at a non-integer location, we just take the value at the nearest integer point (a better way to do it is to interpolate among the neighbors)
Hinv = inv(H);
for x2=1:size(I2,2)
 for y2=1:size(I2,1)
 p2 = [x2; y2; 1];
 p1 = Hinv * p2;
 p1 = p1/p1(3);

 % We'll just pick the nearest point to p1 (better way is to % interpolate).
 x1 = round(p1(1));
 y1 = round(p1(2));

 if x1>0 && x1<=size(I1,2) && y1>0 && y1<=size(I1,1)
 I2(y2,x2) = I1(y1,x1);
 end
 end
end
Example Application - Building Mosaics

• Assume we have two images of the same scene from the same position but different camera angles

• The mapping between the two image planes is a homography

• We find a set of corresponding points between the left and the right image
 – Since the homography matrix has 8 degrees of freedom, we need at least 4 corresponding point pairs
 – We solve for the homography matrix using least squares fitting

• We then apply the homography transform to one image, to map it into the plane of the other image
Examples

- from final project by CSM student Ryan Crawford (2012)
Note – blending should be done so that “seams” are not visible where the images are joined.
Example Application: Generating an Orthophoto

- An “orthophoto” is an aerial photograph geometrically corrected such that the scale is uniform
 - Like a map, an orthophotograph can be used to measure true distances
- Essentially, we want to take the image taken by a camera at some off-axis angle, and transform it as if it were taken looking straight down

- One way to calculate the transform is to find some known “control points” in the input image, and specify where those points should appear in the output image
- Then calculate the transform using least squares fitting
Example

• Transform the image as if it were taken from a camera perpendicular to the wall

Input image

Output image (orthophoto)

Pixel location (x,y):
389, 127;
1964, 347;
419, 1674;
1983, 1325;

Pixel location (x,y):
0 0;
299 0;
0 184;
299 184;

• For control points, we use four brick corners that define a rectangle of known size
 – The rectangle is 8 bricks high and 13 bricks wide
 – Each brick is about 23 cm, so rectangle is 8*23=184 cm high and 13*23=299 cm wide

• We’ll specify the corresponding rectangle in the output image
 – Use scale of 1 cm = 1 pixel
 – Put upper left corner at 0,0
Useful Matlab functions

• **fitgeotrans**
 – Given two sets of control points, estimate the image transform using least squares fitting
 – Example:
 • `Tform1 = fitgeotrans(Pimg1, Pworld1, 'projective');`

• **imwarp**
 – Transform an image using a transform created by “fitgeotrans”
 – Example:
 • `Iout1 = imwarp(Iin1, Tform1);`

Note: prior to Matlab release R2013, these functions were `cp2tform` and `imtransform`
clear all
close all

Iin1 = imread('wall1.jpg');
imshow(Iin1,[]), impixelinfo;

% Location of control points in (x,y) input image coors (pixels)
% These are the corners of a rectangle that is 8 bricks high by 13 bricks
% wide. Each brick is about 23 cm.
Pimg1 = [
 389, 127;
 1964, 347;
 419, 1674;
 1983, 1325;
];

% Mark control points on input image, to verify that we have correct locations.
for i=1:size(Pimg1, 1)
 rectangle('Position', [Pimg1(i,1)-10 Pimg1(i,2)-10 20 20], 'FaceColor', 'r');
end

% Define location of control points in the world. The control points are
% the corners of a rectangle that is 8 bricks high by 13 bricks wide. Each
% brick is about 23 cm. We'll define the upper left control point to be at
% (X,Y)=(0,0), with the +X axis to the right and the +Y axis down.
Pworld1 = [
 0, 0; % Units in cm
 299, 0;
 0, 184;
 299, 184;
];

% Compute transform, from corresponding control points
Tform1 = fitgeotrans(Pimg1,Pworld1,'projective');

% Transform input image to output image
Iout1 = imwarp(Iin1,Tform1);
figure, imshow(Iout1,[]);
Results

• Note – the upper left corner is not at (0,0) in the output image
• `imwarp` automatically enlarges the output image so that it contains the entire transformed image (you can override this)
• To see the location of the output image in the output XY space, use

 \[
 [I_{out1}, \text{ref2D}_{out}] = \text{imwarp}(I_{in1}, T_{form1});
 \]

 \[\text{disp(ref2D}_{out})\]

• Fields of the “imref2D” structure:
 – `XWorldLimits`, `YWorldLimits`: x,y borders of output image
 – `PixelExtentInWorldX`, `PixelExtentInWorldY`: scale of output image
• We specify the control points using the same world coordinate system
% Second image
Iin2 = imread('wall2.jpg');
figure, imshow(Iin2,[]), impixelinfo;

% Location of control points in (x,y) input image
Pimg2 = [
 649, 340;
 2078, 41;
 667, 1573;
 2125, 1628;
];

% Mark control points on input image, just to verify that we have the
% correct locations.
for i=1:size(Pimg2, 1)
 rectangle('Position', [Pimg2(i,1)-10 Pimg2(i,2)-10 20 20], 'FaceColor', 'r');
end

% Define location of control points in the world (in cm).
Pworld2 = [
 299, 0; % X,Y units in cm
 506, 0;
 299, 184;
 506, 161;
];

% Compute transform, from corresponding control points
Tform2 = fitgeotrans(Pimg2,Pworld2,'projective');

% Transform input image to output image
Iout2 = imwarp(Iin2,Tform2);
figure, imshow(Iout2,[]);
Stitching images together

• We want to stitch the two images together to make a panorama
• We can merge them once they are registered to the same coordinate system (i.e., they are both orthophotos)
• But to get them to merge properly, we need to explicitly set output coordinates for both images
Specifying output coordinates

• When calling `imwarp`, we pass in an “imref2d” structure. This specifies the location and size of the output images.
 – Both output images are mapped to the same coordinate system
 – We make the output size big enough to hold both of input images

```matlab
% Use the same ref2D structure to map both of them.
ref2Doutput = imref2d(...
    [185, 506], ... % Size of output image (rows, cols)
    [0, 506], ... % xWorldLimits
    [0, 185]); % yWorldLimits

Iout1 = imwarp(Iin1, Tform1, 'OutputView', ref2Doutput );
Iout2 = imwarp(Iin2, Tform2, 'OutputView', ref2Doutput );
```

• Finally, combine the images

```matlab
Imerge = [Iout1(:,1:300) Iout2(:,301:end)];
figure, imshow(Imerge, []);
```
Final Result

Imerge